Curvelet变换克服了小波变换在处理高维信号时的不足,比小波变换具有更好的方向性、较高的逼近精度和更好的稀疏表达性能。因此将Curvelet变换应用于图像融合领域,能更好地提取图像边缘特征,为融合提取更多的特征信息。利用对偶树复小波-Curvelett变换的多尺度和多方向性特征以及自适应融合规则在选取融合系数上的优势,提出了一种基于对偶树复小波-Curvelet变换的自适应遥感图像融合新算法。算法是将全色图像和多光谱图像进行对偶树复小波-Curvelet变换分解后,针对不同的频率域特点选择不同的融合规则,对低频系数选取区域能量的加权系数自适应融合规则,对高频系数特性选用了区域特征自适应的融合规则,最后通过重构得到融合图像。将其他的融合算法和所提算法进行主观