粗糙集通过二元关系密切联系拓扑,并具有基于自反、自反传递、自反对称等关系的拓扑研究。采用对称传递关系构建拓扑并研究其可数性。基于对称传递关系,定义粗糙集近似集,由此建立拓扑及内部、闭包;针对构建拓扑,确立基与邻域基,得到第二可数性、第一可数性、可分性、林德洛夫性等可数性特征;提供实例分析。研究结果基于新二元关系揭示粗糙集与拓扑深入联系。