针对传统果蝇优化算法(FOA)收敛精度不高和易陷入局部最优的缺点,提出了一种迭代步进值自适应调整的果蝇优化算法(FOAMR)。在该算法中,引入了果蝇群体速度进化因子和聚集度因子,并将迭代步进值表示为以上2个参数的函数同时定义自适应调整因子。在每次迭代时,算法根据当前果蝇群体速度进化因子和聚集度因子动态调整步进值的大小并通过自适应调整因子动态调整搜索距离的大小。对典型函数的测试结果表明,FOAMR比FOA具有更好的全局搜索能力,同时收敛速度、收敛精度明显提高。