论文研究基于属性偏好学习的配电网综合评价方法.pdf

u735696828 41 0 PDF 2020-01-31 04:01:29

为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法。依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价。与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性。该方法实现了合理、客观的配电网综合评价,对地

用户评论
请输入评论内容
评分:
暂无评论