基于学习的单图超分辨率重建算法能获得较好的超分效果,但存在重建图像伪影较为明显的问题。为解决这一问题,提出了一种基于双正则化参数的在线字典学习超分辨率重建算法。在字典学习过程中运用在线字典学习方法(onlinedictionarylearning,ODL),并在稀疏字典生成阶段和图像重建阶段分别设置了两个不同的正则化参数。实验中生成的目标高分辨率图像PSNR比经典的稀疏编码超分方法(sparsecodingsuper-resolution,SCSR)平均提高了0.39dB,在较好地恢复图像边缘锐度和纹理细节的同时有效地抑制了伪影。ODL和双正则化参数的引入,提高了字典训练的精度,使字