针对入侵检测数据集维数高,导致检测算法处理速度慢,而其中包含许多对检测效果影响不大的特征的问题,提出了一种分步特征选择算法。它通过对相关特征和冗余特征的定义,以互信息为准则,首先删除不相关特征,然后删除冗余特征。该算法的时间复杂性低,且独立于检测算法,可以通过调整阈值平衡检测精度和特征的数量。以权威数据集KDD-99为实验数据集,对多种检测算法进行了实验。结果表明,该算法能有效地选择特征向量,保证检测精度,提高检测速度。