论文研究基于多特征融合的中文微博评价对象抽取方法.pdf
中文微博的评价对象抽取作为中文微博情感分析的基础任务,受到研究者的广泛关注,有着重要的研究价值。结合微博文本的特点,对微博文本进行预处理,利用句法分析构建包括名词、名词短语、微博话题在内的评价对象候选集,再分别利用SVM模型、加权模型实现多特征融合的筛选候选评价对象方法,所用特征包括语义角色信息、最小距离和词频。算法经实验证明有效,在对候选评价对象进行筛选后,采用SVM模型的F值达到0.3573,加权模型的F值达到0.4059。
中文微博的评价对象抽取作为中文微博情感分析的基础任务,受到研究者的广泛关注,有着重要的研究价值。结合微博文本的特点,对微博文本进行预处理,利用句法分析构建包括名词、名词短语、微博话题在内的评价对象候选集,再分别利用SVM模型、加权模型实现多特征融合的筛选候选评价对象方法,所用特征包括语义角色信息、最小距离和词频。算法经实验证明有效,在对候选评价对象进行筛选后,采用SVM模型的F值达到0.3573,加权模型的F值达到0.4059。