为克服现有基于HOG特征的部位外观模型未考虑不同细胞单元的不同作用以及不能准确表征相似度的缺陷,提出了一种基于递归支持向量机(R-SVM)和支持向量数据描述(SVDD)算法的人体部位外观模型。所提外观模型由两个分类器构成,利用R-SVM进行特征选择并建立的分类器用于判断图像某区域是否属于人体部位类,利用SVDD建立的相似度分类器用于计算属于人体部位类的图像区域与外观模型的相似度。将所提部位外观模型用于人体上半身姿态的估计,仿真实验结果显示其比现有部位外观模型的估计准确度更高,表明所提部位外观模型可以更准确地描述真实人体部位。