针对传统社团检测算法无法判断网络中特殊节点和SCAN算法对于参数依赖性太大的缺点,提出了一种基于自然最近邻居概念的社团检测算法CD3N。算法利用自然最近邻居无参的特性,首先以结构相似度为基准,计算出网络节点的自然最近邻居,并依此构造小值最近邻域图;然后取邻域图中邻居数最多的节点为核心节点,根据可达关系,构造关于核心节点的社团;重复选取核心节点并构造社团的过程,直到没有可归入社团的节点。将算法应用到空手道俱乐部网络和海豚网络中,并与SCAN算法进行对比。实验结果表明,CD3N算法有效解决了参数敏感性问题,能够很好地进行社团检测。