论文研究解多目标约束问题的改进MaxMinPSO算法.pdf
将最大最小化适应度函数与罚函数相结合,提出了一种实用有效求解多目标约束优化问题的粒子群算法。采用归类和比较的思想进行替换非劣解;改变以往全局最优值的选取方法,而采用轮序方式从非劣解中获取。实验证明改进的MaxMin-PSO算法能更加有效的逼近Pareto解,收敛速度更快,分布更均匀,且能很好的抑制低维多目标约束问题的发散现象。
将最大最小化适应度函数与罚函数相结合,提出了一种实用有效求解多目标约束优化问题的粒子群算法。采用归类和比较的思想进行替换非劣解;改变以往全局最优值的选取方法,而采用轮序方式从非劣解中获取。实验证明改进的MaxMin-PSO算法能更加有效的逼近Pareto解,收敛速度更快,分布更均匀,且能很好的抑制低维多目标约束问题的发散现象。