最频繁项集挖掘是文本关联规则挖掘中研究的重点和难点,它决定了文本关联规则挖掘算法的性能。针对当前在最频繁项集挖掘方面的不足,将集合论引入倒排表以对其进行改进,然后以此为基础提出了几个命题和推论,并结合最小支持度阈值动态调整策略,提出了一个基于改进的倒排表和集合理论的最频繁项集挖掘算法,最后对所提算法进行验证。实验结果表明,所提算法的规则有效率和时间性能比常用的两个最频繁项集挖掘算法,即NApriori和IntvMatrix算法都好。