数据转换是保护数据隐私的一种有效方法。针对如何保持转换后数据的可用性问题,提出了一种基于模糊集的隐私保护方法。该方法把隐私属性值转换成模糊值,然后把转换后的数据及其模糊偏移度一起公开,既保护了数据隐私,也标示了数据的相对大小,很好地保持了数据的可用性。实验采用k-平均聚类方法对转换前后的数据进行聚类分析对比,结果表明,转换前后数据的聚类结果有很高的相似性,满足保护隐私和保持可用性的要求。