分析了量子行为粒子群优化算法,着重研究了算法中群体粒子的搜索行为,对算法中局部吸引点进行了分析,提出针对粒子在搜索过程中所处的不同搜索环境,将粒子的搜索行为分为四种类型,并能够自适应地学习优化问题环境,采用合适的学习模式,提高算法整体优化性能;将改进后的自学习量子粒子群算法与其他一些改进方法通过CEC2005benchmark测试函数进行了比较,最后对结果进行了分析,仿真结果显示自学习方法能够显著改善量子粒子群优化算法的性能。