为了克服不同人群密度及所采用特征对人数估计的影响,提出了一种基于人群密度分类及组合特征的人数统计算法,该算法包括离线特征组合选取和在线实时估计两个阶段。在离线阶段,选取密度阈值将图像样本分为高、低密度两类,然后通过实验方法选取最优的特征组合;在线估计阶段首先通过分类器将样本分为高、低密度两类,然后利用离线阶段选取的特征组合训练得到高斯模型,并分别对两类样本进行人数估计。实验结果表明,与不分高低密度相比,平均估计误差由10.6%降至8.1%;与目前主流的人数估计算法相比,该算法的平均估计误差也更小。