主成分分析(PCA)是模式识别领域一种重要的方法,现在已被广泛地应用于人脸识别算法中,但基于PCA人脸识别系统在应用中面临着一个重要障碍:增量学习问题。针对这个问题,提出了一种适用于成批增量数据的IPCA算法,该算法在原始PCA分解的基础上,利用空间投影变换,使得可以在一个低维空间求解整体PCA,从而降低了求解的复杂度,在此基础上对该增量算法进行了核化,并在ORL人脸数据库上验证了算法的有效性。