随着大数据时代的到来,数据挖掘技术被广泛应用,而线性查询作为该技术中最基础和最频繁的操作,其隐私保护在数据分析和数据发布隐私保护中占有极其重要的位置。交互式线性查询的交互增加了数据的处理量,运用传统的隐私保护模型效率较低。为了解决大数据环境中交互式查询差分隐私保护问题,模型针对大规模数据集中交互式线性查询差分隐私保护的特点,通过数据关联性分析减少冗余信息,采用交替方向乘子法对查询负载矩阵进行分解,利用自适应加噪技术产生差分隐私保护所需要的合理数量的噪声,设计并行处理方法实现该模型的计算。实验将提出的模型与以往模型进行对比,结果表明所提出的模型在提升隐私保护精度的同时也极大地提高了算法性能,因此