改进的单目视觉实时定位与测图方法.pdf,针对经典单目实时定位与测图(SLAM)采用卡尔曼滤波(EKF)滤波和FAST特征角点所存在的非线性误差和鲁棒性较差的问题,提出了一种改进的单目视觉实时定位与测图方法。该方法采用相机中心的迭代EKF(IEKF)滤波方法,将特征点在当前相机坐标系下表达,并在线性化展开点附近迭代更新,不断逼近最优位置,从而最小化线性化误差;针对特征点跟踪的鲁棒性、高效性及分布不均的问题,选用具有尺度和旋转不变性,且探测和匹配效率更高的ORB特征作为特征角点,并采用一种由探测到筛选阶段的整体网格化处理方法;另外,采用特征点逆深度参数化方法,避免了因深度信息未知而导致的局部地图