从海量文本集中选择较优秀的特征子集是文本分类中的一个NP-难问题。而对于NP-问题,遗传算法往往能够有效地加以解决。为了克服传统遗传算法的“漂移”和“早敛”问题,首先引入了粗糙集并在此基础上详细设计了适应度函数、自适应交叉算子、自适应变异算子以及合理的终止条件。以此遗传算法为基础设计了一个特征选择算法。在复旦大学提供的语料库上进行了试验验证。实验结果表明此特征选择算法性能良好。