针对入侵检测系统存在的高漏报率和误报率,提出一种基于遗传禁忌神经网络的入侵检测模型。该模型基于遗传禁忌算法的全局搜索和BP网络局部精确搜索的特性,将遗传禁忌算法和BP算法有机结合,利用遗传禁忌算法优化BP网络初始权重,同时引入小生境技术改进遗传禁忌算法。实验表明,改进的遗传禁忌算法优化BP网络用于入侵检测能提高入侵检测的效率,降低误警率,可在一定程度上提高入侵检测系统的准确率。