针对SIFT算法在进行图像配准时存在提取特征点数目大、无法精确控制、运算速度慢、配准点精度不高的问题,提出一种基于局部显著特征的快速图像配准方法。该方法首先对原始图像和待配准图像进行降采样,对降采样图像分别提取SIFT特征点,并对特征点运用改进的K-means聚类算法进行聚类;然后利用聚类结果筛选聚类区域,在各聚类区域提取显著特征点进行粗匹配;最后利用显著特征点在原始图像中定位显著区域,对所得显著区域进行精配准。实验结果表明,该方法减少了图像匹配时间,控制了特征点数量,在保证匹配准确度的同时,有效地提高了特征匹配的效率。