协同深度学习(CollaborativeDeepLearning,CDL)利用神经网络极强的特征学习能力和模型拟合鲁棒性,解决了推荐系统在数据稀疏的情况下性能表现急剧下降的问题。但当推荐系统面临大量数据时,导致模型训练变得难以维护,进而出现多种不可预料的问题。为解决上述问题,对协同深度学习及其并行化方法进行了研究,提出了一种针对项目内容学习优化的改进模型协同深度推荐(CDLwithitemprivatenode,CDL-i),通过对传统CDL中的自编码网络进行改进,增加私有网络节点,在模型的网络参数共享情况下,为每个项目添加私有偏置项,使网络能够更针对性地学习到项目内容参数,改进了