Introduction to Global Optimization
Accurate modelling of real-world problems often requires nonconvex terms to be introduced in the model, either in the objective function or in the constraints. Nonconvex programming is one of the hardest fields of optimization, presenting many challenges in both practical and theoretical aspects. The presence of multiple local minima calls for the application of global optimization techniques. This paper is a mini-course about global optimization techniques in nonconvex programming; it deals with some theoretical aspects of nonl inear programming as well as with some of the current state- of-the-art algorithms in global optimization. The syllabus is as follows. Some examples of Nonlinear Programming Problems (NLPs). General description of two-phase algorithms. Local optimization of NLPs: derivation of KKT conditions. Short notes about stochastic global multistart algorithms with a concrete example (SobolOpt). In-depth study of a deterministic spatial Branch-and-Bound algorithm, and convex relaxation of an NLP. Latest advances in bilinear programming: the theory of reduction constraints. inear programming as well as with some of the current state- of-the-art algorithms in global optimization. The syllabus is as follows. Some examples of Nonlinear Programming Problems (NLPs). General description of two-phase algorithms. Local optimization of NLPs: derivation of KKT conditions. Short notes about stochastic global multistart algorithms with a concrete example (SobolOpt). In-depth study of a deterministic spatial Branch-and-Bound algorithm, and convex relaxation of an NLP. Latest advances in bilinear programming: the theory of reduction constraints.
暂无评论