暂无评论
为了解决用户评分数据稀疏性和用户最近邻寻找的准确性问题,提出了一种基于项目分类的协同过滤推荐改进算法。该算法首先利用项目分类信息为类内未评分项目预测评分值;然后通过计算类内用户间的相似度得到目标用户的
针对传统的基于用户的协同过滤推荐算法存在用户兴趣偏好模型过于粗糙和邻居集不够准确等问题,提出了一种新的协同过滤推荐算法,命名为基于用户间引力的协同过滤推荐算法。该算法认为用户使用的社会标签可以反映用户
针对传统协同过滤算法中存在的数据稀疏性问题,结合用户评分及用户评论信息的特点,提出了基于评论与评分的user-based协同过滤算法和基于评论与评分的item-based协同过滤算法。该算法利用主题模
针对协同过滤算法中的新用户冷启动问题,提出了基于用户概要扩展的协同过滤算法(EUPCF)。算法采用一种新的加权朴素贝叶斯方法对新用户的概要进行局部扩展,然后使用扩展后的概要为新用户进行预测推荐,为预测
基于内含链接特征分析的垃圾邮件过滤技术,欧德宁,马军,针对垃圾邮件中往往会包含指向目标地址的链接的特性,本文提出一种新颖的垃圾邮件过滤方法。该方法提取邮件体中的链接,将其相关
概述了社区发现算法的研究现状;介绍了因分析对象的不同而产生的四类社区发现方法:矩阵谱分析方法、层次聚类方法、基于边图思想的方法和基于极大团思想的方法。对其中性能最优的层次聚类方法进行了详细的综述,并对
一种基于匹配区域特征的相似字符串匹配过滤算法,孙德才,孙星明,为加快相似字符串匹配中过滤算法的匹配速度,提出了一种基于匹配区域特征的过滤算法。该算法对文本串预处理采用了q-gram索引结构;
传统的话题发现研究主要针对于长文本及新闻数据集,大规模短文本具有稀疏、无结构、多噪等特点,传统方法很难有效发现话题。提出了一个融合词共现与加权GN(CW-WGN)算法的快速话题发现方法,描述了CW-W
K均值聚类算法是目前一种较好的文本分类算法,算法中的相似度计算通常基于词频统计,小文档或简单句子由于词频过小,使用该算法聚类效果较差。为此,提出了一种基于词语关联度的相似度计算算法,对简单文档集执行
KLT算法已在多个领域得到成功的应用,其中特征点的排序是用来选择好的特征点跟踪的关键。针对传统排序算法计算耗时、实时性差的缺点,提出一种可并行的多层次归并排序算法并在FPGA中实现了其并行计算,同时分
暂无评论