图论导论(完全)
introductorytextshouldbeleanandconcentrateontheessentialsoas
toofferguidancetothosenewtothefield.Asagraduatetext.moreover
itshouldgettotheheartofthematterquickly:afterall.theideaisto
conveyatleastanimpressionofthedepthandmethodsofthesubject
Ontheotherhand,ithasbeenmyparticularconcerntowritewith
ufficientdetailtomakethetextenjoyableandeasytoread:guiding
questionsandideaswillbediscussedexplicitly,andallproofspresented
willberigorousandconplete
Atypicalchapter,therefore,beginswithabriefdiscussionofwhat
arctheguidingqucstionsinthcarcaitcovers,continueswithasuccinct
accountofitsclassicresults(oftelwithsimplifiedproofs),anldthen
presentsoneortwodeepert.heoremsthatbringoutthefullflavourof
thatarea.Theproofsoftheselatterresultsaretypicallyprecededby(or
interspersedwith)aninformalaccountoftheirmainideas,butarethen
presentedformallyatthesamelevelofdetailastheirsimplercounter
parts.Isoonnoticedthat,asaconsequence,someofthoseproofscame
outratherlongerinprintthanseemedfairtotheiroftenbeautifull
simpleconception.Iwouldhope,however,thatevenfortheprofessional
readertherelativelydetailedaccountofthoseproofswillatleasthell
tominimizereadingtime.
Ifdesired.thistextcanbeusedforalecturecoursewithlittleor
nofurtherpreparation.Thesimplestwaytodothiswouldbetofollow
theorderofpresentation,chapterbychapter:apartfromtwoclearly
markedexceptions,anyresultsusedintheproofofothersprecedethe
inthetext
Alternatively,alecturermaywishtodividethematerialintoaneasy
basiccourseforonesemester,andamorechallengingfollow-upcourse
oranother.Tohelpwiththepreparationofcoursesdeviatingfromthe
orderofpresentation,Ihavelistedinthemarginnexttoeachproofthe
referencenumbersofthoseresultsthatareusedinthatproof.These
referencesaregiveninroundbrackets:forexample,areference(4.1.2)
inthemarginnexttotheproofofTheorem4.3.2indicatesthatLemma
4.1.2willbcuscdinthisproof.Correspondingly,inthemarginncxtto
Lemma4.1.2thereisareference[4.3.2(insquarebrackets)informing
thereaderthatthislemmawillbeusedintheproofofTheorem4.3.2
Notethatthissystemappliesbetweendifferentsectionsonly(ofthesame
orofdifferentchaptersthesectionsthemselvesarewrittenasunitsand
best,readintheirorderofpresentation
Themathematicalprerequisitesforthisbook,asformostgraph
theorytexts,areminimal:afirstgroundinginlinearalgebraisassumed
forChapter1.9andonceinChapter5.5,somebasictopologicalcon
ceptsabouttheEuclideanplaneand3-spaceareusedinChapter4,and
apreviousfirstencounterwithelementaryprobabilitywillhelpwith
Chapter11.(Evenhere,allthatisassumedformallyistheknowledge
ofbasicdefinitions:thefewprobabilistictoolsusedaredevelopedinthe
Preface
text.)TherearetwoareasofgraphtheorywhichIfindbothfascinat
ingandimportant,especiallyfromtheperspectiveofpuremathematics
adoptedhere,butwhicharenotcoveredinthisbook:thesearealgebraic
graphtheoryandinfinitegraphs
Attheendofeachchapter,thereisasectionwithexercisesand
anotherwithbibliographicalandhistoricalnotes.Manyoftheexercises
werechosentocomplementthemainnarrativeofthetext:theyillus-
tratenlewconcepts,showhowanlewinvariantrelatestoearlierones
orindicatewaysinwhicharesultstatedinthetextisbestpossible
Particularlyeasyexercisesareidentifiedbythesuperscript,themore
challengingonescarrya+.Thenotesareintendedtoguidethereader
ontofurtherreading,inparticulartoanymonographsorsurveyarticles
onthethemeofthatchapter.Theyalsooffersomehistoricalandother
remarksonthematerialpresentedinthetext
Endsofproofsaremarkedbythesymbolu.Wherethissymbolis
founddirectlybelowaformalassertion,itmeansthattheproofshould
bcclcaraftcrwhathasbccnsaid--aclaimwaitingtobeverified!Thcrc
arealsosomedeepertheoremswhicharestated,withoutproof,asback-
groundinformation:thesecanbeidentifiedbytheabsenceofbothproof
and口
Almosteverybookcontainserrors,andthisonewillhardlybean
exception.IshalltrytopostontheWebanycorrectionsthatbecome
necessary.Therelevantsitemaychangeintime,butwillalwaysbe
accessibleviathefollowingtwoaddresses
http://www.springer-ny.com/supplements/diestel/
http://www.springer.de/catalog/html-files/deutsch/math/3540609180.html
Pleaseletmeknowaboutanyerrorsyoufind
Littleinatextbookistrulyoriginal:eventhestyleofwritingand
ofpresentationwillinva.riablybeinfluencedbyexamples.Thebookthat
nodoubtinfluencedmemostistheclassicGTMgraphtheorytextby
Bollobas:itwasinthecourserecordedbythistextthatIlearntmyfirst
graphtheoryasastudent.Anyonewhoknowsthisbookwellwillfeel
itsinfluencehere,despitealldifferencesincontentsandpresentation
Ishouldliketothankallwhogavesogenerouslyofthcirtimc
knowledgeandadviceillCOllllectiolwiththisbook.Ihavebenefited
particularlyfromthehelpofn.Alon,G.Brightwell,R.Gillett,R.Halin
M.Hintz.AHuck.ILeader.TLuczak.W.Mader.vRodl.A.D.Scott
P.D.Seymour,G.Simonyi,M.Skoviera,R.Thomas,C.Thomassenand
P.Valtr.IamparticularlygratefulalsotoTommyR.Jensen,whotaught
memuchaboutcolouringandallIknowaboutk-flows,andwhoinvested
immenseamountsofdiligenceandenergyinhisproofreadingofthepre
liminarygermanversionofthisbook
March1997
RD
relace
aboutthesecondedition
Naturally.Iamdelightedathavingtowritethisaddendumsosoonafter
thisbookcamcoutinthesummerof1997.Itisparticularlygratifying
tohearthatpeoplearegraduallyadoptingitnotonlyfortheirpersonal
lIsehutmoreandmorealsoasacoursetext;this,afterall,wasmyaim
whenIwroteit,andmyexcuseforagonizingmoreoverpresentation
thanImightotherwisehavedone.
Therearetwomajorchanges.Thelastchapterongraphminors
nowgivesacompleteproofofoneofthemajorresultsoftheRobertson
Seymourtheory,theirtheoremthatexcludingagraphasaminorbounds
thetree-widthifandonlyifthatgraphisplanar.Thisshortproofdid
notexistwhenIwrotethefirstedition,whichiswhyithenincludeda
shortproofofthenextbestthingtheanalogousresultforpath-width
ThattheoremhasnowbeendroppedfromChapter12.Anotheraddition
inthischapteristhatthetree-widthdualitytheorem,Theorem12.3.9
nowcomeswitha(short)prooftoo
Thesecondmajorchangeistheadditionofacompletesetofhints
fortheexercises.ThesearelargelyTollllllyJensenr'swork,alldIalll
gratefulforthetimehedonatedtothisproject.Theaimofthesehints
istohclpthoscwhouscthebooktostudygraphthcoryonthcirown
butnottospoilthefun.Theexercises,includinghints,continuetobe
intendedforclassroomuse
apartfromthesetwochanges.thereareafewadditions.Themost
noticableofthesearetheformalintroductionofdepth-firstsearchtrees
inSection1.5(whichhasledtosomesimplificationsinlaterproofs)and
aningeniousnewproofofMenger'stheoremduetoBohme,Goringand
Harant(whichhasnototherwisebeenpublished
Finally,thereisdhostofSInallsimplificationsalldclarificatiOns
ofargumentsthatInoticedasItaughtfromthebook,orwhich
were
pointedouttomebyothers.ToalltheseIoffermyspecialthanks
TheWebsiteforthebookhasfollowedmeto
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory
Iexpectthisaddresstobestableforsometime
Oncemore,mythanksgotoallwhocontributedtothissecond
editionbycommentingonthefirst-andilookforwardtofurthercom
Inlets
December1999
RD
Preface
aboutthethirdedition
Thereisnodenyingthatthisbookhasgrown.Isitstillas'leanand
concentratingontheessentialasIsaiditshouldbewhenIwrotethe
prefacetothefirstedition,nowalmosteightyearsago?
Ibelievethatitis,perhapsIlowInorethallever.Sowhythieincrease
involume?PartoftheansweristhatIhavecontinuedtopursuethe
originaldualaimofofferingtwodifferentthingsbetweenonepairof
covers.
arcliablcfirstintroductiontographthcorythatcanbcuscdcithcr
forpersonalstudyorasacoursetext
agraduatetextthatofferssomedepthinselectedareas
Foreachoftheseaims.somematerialhasbeenadded.Someofthis
coversnewtopics,whichcanbeincludedorskippedasdesiredAn
exampleattheintroductorylevelisthenewsectiononpackingand
coveringwiththeErdos-Posatheorem,ortheinclusionofth
nestable
marriagetheoreminthematchingchapter.Anexampleatthegraduate
levelistherobertson-Seymourstructuretheoremforgraphswithouta
givenminor:aresultthattakesafewlinestostate,butonewhichisin
creasinglyreliedonintheliterature,sothlatilleasilyaccessiblereference
seemsdesirable.Anotheraddition,alsointhechapterongraphminors
isanewproofofthe'Kuratowskitheoremforhighersurfaces'aproof
whichillustratestheinterplaybetweengraphminortheoryandsurface
topologybetterthanwaspreviouslypossible.Theproofiscomplemented
Dyanappendixonsurfaces,whichsuppliestherequiredbackgroundand
alsoshedssomemorelightontheproofofthegraphminortheorem
Changesthataffectpreviouslyexistingmaterialarerare,exceptfor
countlesslocalimprovementsintendedtoconsolidateandpolishrather
thanchangc.Iamawarethat,asthisbookisincreasinglyadoptedas
acoursetext.thereisacertaindesireforstability.Manyoftheselocal
improvementsaretheresultofgenerousfeedbackIgotfromcolleagues
usingthebookinthisway,andIamverygratefulfortheirhelpand
Therearealsosomelocaladditions.Mostofthesedevelopedfrom
myownnotes,pencilledinthemarginasipreparedtoteachfromt
book.Theytypicallycomplementanimportantbuttechnicalproof
whenifeltthatitsessentialideasInightgetoverlookedintheformal
write-up.Forexample,theproofoftheErdos-Stonetheoremnowhas
aninformalpost-mortemthatlooksathowexactlytheregularitylemma
comestobeappliedinit.Unliketheformalproof,thediscussionstarts
outfromthemainidea,andfinallyarrivesathowtheparameterstobe
declaredatthestartoftheformalproofmustbespecified.Similarly
thereisnowadiscussionpointingtosomeideasintheproofoftheperfect
graphtheorem.However,inallthesecasestheformalproofshavebeen
leftessentiallyuntouched
relace
Theonlysubstantialchangetoexistingmaterialisthattheold
Theorem8.1.1(thatcr-nedgesforceaTK)seemstohavelostits
nice(andlong)proof.Previously,thisproofhadservedasawelcome
opportunitytoexplainsomemethodsinsparseextremalgraphtheory.
Thesemethodshavemigratedtotheconnectivitychapter,wherethey
nowliveundertheroofofthenewproofbyThomasandWollanthat8kn
edgesmakca2k-conncctcdgraphke-linkcdSothcyarcstillthcrc,Icancr
thalleverbefore,alldjustpresentingthemselvesunderallewguise.A
aconsequenceofthischange,thetwoearlierchaptersondenseand
sparseextremalgraphtheorycouldbereunited,toformanewchapter
appropriatelynamedasLrctremalGraphTheory
Finally,thereisanentirelynewchapter,oninfinitegraphs.When
graphtheoryfirstemergedasamathematicaldiscipline,finiteandinfi-
nitegraphswereusuallytreatedonapar.Thishaschangedinrecent
years,whichIseeasaregrettableloss:infinitegraphiscontinuetopro
videanaturalandfrequentlyusedbridgetootherfieldsofmathematics
andthcyholdsomcspccialfascinationofthcirown.Oncaspectofthis
isthatproofsoftenhavetobemoreconstructiveandalgorithmicin
naturethantheirfinitecounterparts.Theinfiniteversionofmenger's
theoreminSection8.4isatypicalexample:itoffersalgorithmicinsights
intoconnectivityproblemsinnetworksthatareinvisibletotheslick
inductiveproofsofthefinitetheoremgiveninChapter3.3
Oncemore,mythanksgotoallthereadersandcolleagueswhose
commcntshelpedtoimprovcthebook.IamparticularlygratefultoImrc
Leaderforhisjudiciouscommentsonthewholeoftheinfinitechapter;to
mygraphtheoryseminar,inparticulartoLilianMatthiesenandPhilipp
Spriissel,forgivingthechapteratestrunandsolvingallitsexercises
(ofwhicheightysurvivedtheirscrutiny)toAngelosGeorgakopoulosfor
muchproofreadingelsewhere;toMelanieWinMyintforrecompilingthe
indexandextendingitsubstantially;andtoTimStelldingerfornursing
thewhaleonpage366untilitwasstrongenoughtocarryitsbaby
dinosaur
May2005
RD
Contents
Preface
1.TheB
1.1Graphs
1.2Thedegreeofavertex
1.3Pathsandcycles
1.4Connectivity*x
1.5Treesandforests*
13
1.6Bipartite
1.7Contractionandmino/s*
··
1.8Eulertours*k
1.9Sonelinearalgebra
1.10Othernotionsofgraphs
Exercises
30
「o
32
2.Matching,CoveringandPacking
chinginbipartitegrap
2.2Matchingingeneralgraphs*)
·····
39
2.3Packingandcovering
44
2.4Tree-packingandarboricity
46
2.5Pathcovers
49
Exercises
N
53
Sectionsmarkedbyanasteriskarerecommendedforafirstcourse
first
Xlv
Contents
3.Connectivity
3.12-Connectedgraphsandsubgraphs*
3.2Thestructureof3-connectedgraphs/*
55
57
3.3Menger'stheorem
3.4Mader'stheorem
3.5Linkingpairsofvertices
69
Exercises
Notes
4.Planargraphs
4.1Topologicalprerequisites
4.2Planegraphs
4.3Drawings
1.Planargraphs:Kuratowski,'stheorem*
4.5Algebraicplanaritycriteria
..,101
4.6Planedualit
103
E
106
Notes
109
ouring
111
5.1Colouringmapsandplanargraphs
112
5.2Colouringvert
..,114
5.3Colouringedges
119
5.4Listcolouring..............
121
grap
126
Exercises
133
Note
136
6.Flows
139
6.1Circulations(*)
··.··
......140
6.2Flowsinnetworks
141
6.3Group-valuedFlows.......
144
6.4k-Flowsforsmallk
149
6.5Flow-colouringduality
152
6.6Tutte'sHowconjecturEs.........
156
160
oles
Contents
7.ExtremalGraphTheory
7.1Subgraphs
164
7.2Minors()
169
7.3Hadwigersconjecture*
172
7.1Szemeredi'sregularitylemma
7.5Applyingtheregularitylemma
183
Exercises
189
Notes
192
8.Infinitegraphs
195
8.1Basicnotions,factsandtechniques
196
8.2Paths,trees,andends(k)
204
8.3Homogeneousanduniversalgraphs
212
8.4Connectivityalldinatching
8.5Thetopologicalendspace
226
xercises
237
244
9.RamseyTheoryforGraphs
251
9.1Ramsey'soriginaltheorems
252
9.2Ramseynumbers()
255
9.3InducedRamseytheorems
9.4Ramseypropertiesandconnectivity
26
Exercises
10.HamiltonCycles
275
10.1Simplesufficientconditi
10.2Hamiltoncyclesanddegreesequences
278
10.3Hamiltoncyclesinthesquareofagraph
281
289
Notes
290
暂无评论