提出一种新的稀疏贝叶斯回归算法.基于相关向量机,首先通过尺度核和小波核构造完备基以提高预测精度;然后利用保局投影对输入矩阵的列进行主成分提取以减少训练时间,从而形成算法的初步模型.为进一步减小较大规模训练数据集的回归时间压力,算法对训练数据集的分层采样建立了初步模型,进而产生实际较小规模的训练数据集.实验结果表明,算法在预测精度和鲁棒性上优于传统支持向量机和相关向量机,且其训练时间较相关向量机少.