针对SVM和PCA-SVM进行质量控制图模式识别时泛化能力不足和识别精度不高的问题,提出一种基于遗传优化的PCA-SVM控制图模式识别方法。该方法的基本思想是首先基于特征子空间降维方法,运用PCA算法对原始特征样本进行主元分析,有效降低原始特征样本维数并突出聚类,提取各模式之间的主元特征;然后把此特征看成遗传算法中一组染色体,对支持向量机分类器核参数和惩罚因子进行二进制编码,通过对随机产生的一组染色体进行模式识别,并将此识别率作为遗传算法的适应度函数,通过选择、交叉和变异操作,对其参数进行自适应寻优;最后用优化的支持向量机分类器进行控制图模式识别。通过仿真