Determinantal point processes for machine learning
行列式点过程(DPP)是量子物理学和随机矩阵理论中出现的优雅的排斥概率模型。与传统的结构模型(如马尔可夫随机字段)相比,传统的结构模型在负相关的情况下变得棘手且难以近似,因此DPP可用于采样,边缘化,调节和其他推理任务的精确算法。我们对DPP进行了温和的介绍,重点关注与机器学习社区最相关的直觉,算法和扩展,并展示如何将DPP应用于实际应用,例如找出各种高质量的搜索结果,通过从文档中选择不同的句子,在图像或视频中对不重叠的人体姿势进行建模,以及自动构建重要新闻故事的时间表来构建信息摘要。
用户评论
推荐下载
-
Machine_Learning_and_Deep_Learning源码
PYTHON_ML_DS 模块1-Python编程 第2单元-数据科学Python 单元3-机器学习 单元4-案例研究 [垃圾邮件检测(NLP-分类)] ->要检查实时网站,请 ->要了解
11 2021-02-08 -
Machine Learning by Tutorials Beginning machine learning for Apple and_code.z01
MachineLearningbyTutorials:BeginningmachinelearningforAppleandiOSbyMatthijsHollemans--May31,2019Mach
31 2019-07-30 -
machine learning ipn CIC IPN的Curso de Machine Learning源码
machine-learning-ipn:CIC IPN的Curso de Machine Learning
18 2021-04-17 -
machine_learning_mastery系列Master_Machine_Learning_Algorithms.pdf
Preface Machine learning algorithms dominate applied machine learning. Because algorithms are such a
99 2018-12-29 -
machine_learning_mastery系列Machine_Learning_Mastery_with_R.pdf
Preface I think R is an amazing platform for machine learning. There are so many algorithms and so m
94 2018-12-29 -
Machine Learning A Probabilistic Perspective
机器学习方面很经典的书籍之一(3本中的第1本)
12 2021-01-07 -
Machine Learning的源码
Machine-Learning的源码
11 2021-01-07 -
PYTHON_MACHINE_LEARNING
PYTHON_MACHINE_LEARNING.pdf
10 2020-12-29 -
Pattern Recognition and Machine Learning
The dramatic growth in practical applications for machine learning over the last ten years has been
14 2020-12-21 -
Machine Learning with Spark源码
Machine Learning with Spark源码
12 2020-10-31
暂无评论