在识别矢量笔迹文本时,不同类型单字需要采用不同识别器,确定详细类别是单字识别的前提。对实际中文矢量笔迹文本中单字进行汉字、标点、数字、字母和单词的详细分类,提出了自身和相对(包括近邻和同行)特征,选用决策树、逻辑模型树、贝叶斯网络和支持向量机四种分类器。针对大量实际数据,测试和比较了多种特征和分类器的性能。实验表明,近邻单字的组合特征具有较好的分类能力,支持向量机对各种单字均有较好分类性能。