提出了一种面向行为识别的拉普拉斯特征映射算法的改进方法。首先,将Kinect提供的关节点数据作为姿态特征,采用Levenstein距离改进流形学习算法中的拉普拉斯特征映射算法,并映射到二维空间得到待识别行为的嵌入空间;其次,结合待识别行为的嵌入空间和训练数据建立先验模型;最后,通过重新设计的粒子动态模型和观察模型,采用粒子滤波算法进行行为识别。实验结果表明,该方法可以对重复动作、遮挡,以及动作幅度和速度都有明显差异的行为进行较好的识别,总体识别率达到92.4%。