实验产生的蛋白质相互作用数据不可避免地伴随着假阳性和假阴性,因而,基于蛋白质相互作用数据预测蛋白质复合物的计算方法天然具有较大的误差。为了弥补这种数据先天性不足,基因表达谱被结合进来,构造了新的加权蛋白质网络。为了验证网络的生物学意义,马尔可夫聚类算法被用于从加权与非加权网络中预测蛋白质复合物,预测到的复合物与基准复合物进行匹配分析。分析结果表明,加权网络比非加权网络具有更高的生物学意义。