B样条曲线拟合问题中,将节点作为自由变量可大幅提高拟合精度,但这就使曲线拟合问题转化为求解困难的连续多峰值、多变量非线性优化问题,当待拟合的曲线是不连续、有尖点情况,就更为困难。针对这一问题,基于混沌蚂蚁群优化算法CASO,提出了一种新的B样条曲线拟合算法CASO-DF。该算法结合B样条曲线拟合原理,通过蚁群中蚂蚁个体的混沌行为,调整自由节点位置,通过蚁群的自组织行为自适应地调整内部节点数目,解决了B样条曲线拟合问题。仿真结果表明了CASO-DF算法能够有效实现自由节点B样条曲线拟合,且性能优于其他同类算法。