矩阵分析.pdf
“毫无疑问,对数值计算研究人员来说,本书是一本标准的参考书。”——Computing Reviews “不论对从事线性代数纯理论研究还是从事其应用研究的人员来说,本书都是一本必备的参考书。”——SIAM Review “这本书无疑会成为一本标准的教科书。”——American Scientist “总之,作者已经完成了一项杰出的工作,对线性代数和应用数学进行了精心组织的、内容全面广泛的综述,它既可以作为教科书,也可以作为参考书。对相关领域的每个人来说,本书都是必备的参考书。”——American Scientist 矩阵理论作为一种基本的数学工具,在数学学科与其他科学技术领域(如数值分析、优化理论、微分方程、概率统计、系统工程等)都有广泛应用。电子计算机及计算技术的发展也为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于理工科本科生和研究生来说是必不可少的。 本书融合了矩阵分析的两个出发点,论述了矩阵分析的经典结果和现代结果。首先,它包括了由于数学分析的需要而产生的线性代数中的论题;其次,它是解决实的和复的线性代数问题的一种方法,这种方法果断地采用诸如极限、连续和幂级数这些来自分析的概念。本书自1985年问世以来,受到越来 越多的数学工作者和科技人员的好评和欢迎。时至今日,该书仍旧是一本十分有价值的名著。天津大学、上海交通大学等多所高等院校将其采纳为教材。 本书从数学分析的角度论述矩阵分析的经典方法和现代方法,取材新,有一定的深度,并给出在多元微积分、复分析、微分方程、量优化、逼近理论中的许多重要应用。主要内容包括:特征值、特征向量和相似性,酉等价和正规矩阵,标准形,Hermite矩阵和对称矩阵,向量范数和矩阵范数,特征值和估计和扰动,正定矩阵,非负矩阵。 本书可作为工程、统计、经济学等专业的研究生教材和数学专业高年级本科生教材,也可作为数学工作者和科技人员的参考书。
用户评论