Generalized_Linear_Models (2nd ed) McCullagh
Contents
Prefacetothefirstedition
XVI
Preface
XVIll
1Introduction
1.1Background
1.1.1Theproblemoflookingatdata
1.1.2Theoryaspattern
1.1.3Modelfitting
1.1.4Whatisagoodmodel?
1.2Theoriginsofgeneralizedlinearmodels
113457889
1.2.1Terminology
1.2.2Classicallinearmodels
1.2.3RA.Fisherandthedesignofexperiments
10
1.2.4Dilutionassay
1.2.5Probitanalysis
13
1.2.6Logitmodelsforproportions
14
1.2.7Log-linearmodelsforcounts
14
1.2.8Inversepolynomials
16
1.2.9Survivaldata
16
1.3Scopeoftherestofthebook
17
1.4Bibliographicnotes
1.5Furtherresultsandexercises1
19
2Anoutlineofgeneralizedlinearmodels
21
2.1Processesinmodelfitting
21
2.1.1Modelselection
21
2.1.2Estimation
23
2.1.3Prediction
vill
CONTENTS
2.2Thecomponentsofageneralizedlinearmodel
26
2.2.1Thegeneralization
27
2.2.2Likelihoodfunctions
28
2.2.3Linkfunctions
30
2.2.4Sufficientstatisticsandcanonicallinks
32
2.3Measuringthegoodnessoffit
2.3.1Thediscrepancyofafit
33
2.3.2Theanalysisofdeviance
2.4Residuals
37
2.4.1Pearsonresidual
37
2.4.2Anscomberesidual
2.4.3Devianceresidual
39
2.5Analgorithmforfittinggeneralizedlinearmodels
40
2.5.1Justificationofthefittingprocedure
41
2.6Bibliographicnotes
43
2.7Furtherresultsandexercises2
3Modelsforcontinuousdatawithconstantvariance48
3.1Introduction
48
3.2Errorstructure
49
3.3Systematiccomponent(linearpredictor
51
3.3.1Continuouscovariates
51
3.3.2Qualitativecovariates
52
3.3.3Dummyvariates
54
3.3.4Mixedterms
55
3.4Modelformulaeforlinearpredictor
56
3.4.1Individualterms
56
3.4.2Thedotoperator
56
3.4.3Theoperator
57
3.4.4Thecrossing(*)andnesting(/)operators
58
3.4.5Operatorsfortheremovalofterms
59
3.4.6Exponentialoperator
60
3.5Aliasing
61
3.5.1Intrinsicaliasingwithfactors
63
3.5.2Aliasinginatwo-waycross-classification
65
3.5.3Extrinsicaliasing
68
3.5.4Functionalrelationsamongcovariates
69
3.6Estimation
70
3.6.1Themaximum-likelihoodequations
70
3.6.2Geometricalinterpretation
71
CONTENTS
3.6.3Information
3.6.4Amodelwithtwocovariates
74
3.6.5Theinformationsurface
3.6.6Stability
3.7Tablesasdata
79
3.7.1Emptycells
79
3.7.2Fusedcells
81
3.8Algorithmsforleastsquares
81
3.8.1Methodsbasedontheinformationmatrix
82
3.8.2Directdecompositionmethods
85
3.8.3Extensiontogeneralizedlinearmodels
88
3.9Selectionofcovariates
89
3.10Bibliographicnotes
93
3.11Furtherresultsandexercises3
93
4Binarydata
98
4.1Introduction
4.1.1Binaryresponses
4.1.2Covariateclasses
99
4.1.3Contingencytables
4.2Binomialdistribution
101
4.2.1Genes
101
4.2.2Momentsandcumulants
102
4.2.3Normallimit
103
4.2.4Poissonlimit
105
4.2.5Transformations
105
4.3Modelsforbinaryresponses
107
4.3.1Linkfunctions
107
4.3.2Parameterinterpretation
110
4.3.3Retrospectivesampling
111
4.4Likelihoodfunctionsforbinarydata
114
4.4.1Loglikelihoodforbinomialdata
114
4.4.2Parameterestimation
115
4.4.3Deviancefunction
118
4.4.4Biasandprecisionofestimates
119
4.4.5Sparseness
120
4.4.6Extrapolation
122
4.5Over-dispersion
124
4.5.1Genesis
124
4.5.2Parameterestimation
126
CONTENTS
46E
128
4.6.1Habitatpreferencesoflizards
128
4.7Bibliographicnot
135
4.8Furtherresultsandexercises4
135
5Modelsforpolytomousdata
149
5.1Introduction
149
5.2Measurementscales
150
521G
po】
150
5.2.2Modelsforordinalsca
151
5.2.3Modelsforintervalscales
155
5.2.4Modelsfornominalscales
159
5.2.5Nestedorhierarchicalresponsescales
160
5.3Themultinomialdistribution
164
5.3.1Genesis
164
5.3.2Momentsandcumulants
165
5.3.3Generalizedinversematrices
168
5.3.4Quadraticforms
169
5.3.5Marginalandconditionaldistributions
5.4Likelihoodfunctions
5.4.1Loglikelihoodformultinomialresponses
171
5.4.2Parameterestimation
172
5.4.3Deviancefunction
174
5.5Over-dispersion
174
5.6Examples
175
5.6.1Acheese-tastingexperiment
175
5.6.2Pneumoconiosisamongcoalminers
178
5.7Bibliographicnotes
182
5.8Furtherresultsandexercises5
184
6Log-linearmodels
193
6.1Introduction
193
6.2Likelihoodfunctions
194
6.2.1Poissondistribution
194
6.2.2ThePoissonlog-likelihoodfunction
197
6.2.3Over-dispersion
198
6.2.4Asymptotictheory
200
6.3Examples
200
6.3.1Abiologicalassayoftuberculins
200
6.3.2Astudyofwavedamagetocargoships
204
CONTENTS
6.4Log-linearmodelsandmultinomialresponsemodels209
6.4.1ComparisonoftwoormorePoissonmeans
6.4.2Multinomialresponsemodels
211
6.4.3Summary
213
6.5Multipleresponses
214
6.5.1Introduction
214
6.5.2Independenceandconditionalindependence215
6.5.3Canonicalcorrelationmodels
217
6.5.4Multivariateregressionmodels
219
6.5.5Multivariatemodelformulae
222
6.5.6Log-linearregressionmodels
223
6.5.7Likelihoodequations
225
6.6Example
229
6.6.1Respiratoryailmentsofcoalminers
229
6.6.2Parameterinterpretation
233
6.7Bibliographicnotes
6.8Furtherresultsandexercises6
236
7Conditionallikelihoods
245
7.1Introduction
245
7.2Marginalandconditionallikelihoods
246
7.2.1Marginallikelihood
246
7.2.2Conditionallikelihood
248
7.2.3Exponential-familymodels
252
7.2.4Profilelikelihood
254
7.3Hypergeometricdistributions
255
7.3.1Centralhypergeometricdistribution
255
7.3.2Non-centralhypergeometricdistribution
257
7.3.3Multivariatehypergeometricdistribution
260
7.3.4Multivariatenon-centraldistribution
261
7.4Someapplicationsinvolvingbinarydata
262
7.4.1Comparisonoftwobinomialprobabilities
262
7.4.2Combinationofinformationfrom2x2tables265
7.4.3Ille-et-Vilainestudyofoesophagealcancer
267
7.5Someapplicationsinvolvingpolytomousdata
270
7.5.1Matchedpairs:nominalresponse
270
7.5.2Ordinalresponses
273
7.
Example
276
7.6Bibliographicnotes
277
7.7Furtherresultsandexercises7
279
x11
CONTENTS
8Modelswithconstantcoefficientofvariation
285
8.1Introducti
285
8.2Thegammadistribution
287
8.3Modelswithgamma-distributedobservations
289
8.3.1Thevariancefunction
289
8.3.2Thedeviance
290
8.3.3Thecanonicallink
8.3.4Multiplicativemodels:loglink
292
8.3.5Linearmodels:identitylink
294
8.3.6Estimationofthedispersionparameter
295
8.4Examples
296
8.4.1Carinsuranceclaims
296
8.4.2Clottingtimesofblood
300
8.4.3Modellingrainfalldatausing
twogeneralizedlinearmodels
8.4.4DevelopmentalrateofDrosophilamelanogaster306
8.5Bibliographic
313
8.6Furtherresultsandexercises8
314
9Quasi-likelihoodfunctions
323
9.1Introduction
323
9.2Independentobservations
324
9.2.1Covariancefunctions
324
9.2.2Constructionofthequasi-likelihoodfunction325
9.2.3Parameterestimation
327
9.2.4Example:incidenceofleaf-blotchonbarley328
9.3Dependentobservations
332
9.3.1Quasi-likelihoodestimatingequations
332
9.3.2Quasi-likelihoodfunction
333
9.3.3Example:estimationofprobabilitiesfrom
marginalfrequencies
336
9.4Optimalestimatingfunctions
339
9.4.1Introduction
339
9.4.2Combinationofestimatingfunctions
340
9.4.3Example:estimationformegalithicstonerings343
9.5Optimalitycriteria
347
9.6Extendedquasi-likelihood
349
9.7Bibliographicnotes
352
9.8Furtherresultsandexercises9
352
CONTENTS
10Jointmodellingofmeananddispersion
357
10.1Introduction
357
10.2Modelspecification
358
10.3Interactionbetweenmeananddispersioneffects359
10.4Extendedquasi-likelihoodasacriterion
360
10.5Adjustmentsoftheestimatingequations
361
10.5.1Adjustmentforkurtosis
10.5.2Adjustmentfordegreesoffreedom
362
10.5.3Summaryofestimatingequationsfor
thedispersionmode
363
10.6Jointoptimumestimatingequations
10.7Example:theproductionofleaf-springsfortrucks365
10.8Bibliographicnotes
370
10.9Furtherresultsandexercises10
371
11Modelswithadditionalnon-linearparameters372
11.1Introduction
372
11.2Parametersinthevariancefunction
373
11.3Parametersinthelinkfunction
375
11.3.1Onelinkparameter
375
11.3.2Morethanonelinkparameter
377
11.3.3Transformationofdatavs
transformationoffittedvalues
378
11.4Non-linearparametersinthecovariates
379
11.5Examples
381
11.5.1Theeffectsoffertilizersoncoastal
Bermudagrass
8
11.5.2Assayofaninsecticidewithasynergist384
11.5.3Mixturesofdrugs
386
11.6Bibliographicnotes
389
11.7Furtherresultsandexercises11
389
12Modelchecking
12.1Introduction
391
12.2Techniquesinmodelchecking
392
12.3Scoretestsforextraparameters
393
2.4Smoothingasanaidtoinformalchecks
394
12.5Therawmaterialsofmodelchecking
396
CONTENTS
12.6Checksforsystematicdeparturefrommodel
398
12.6.1Informalchecksusingresiduals
398
12.6.2Checkingthevariancefunction
400
12.6.3Checkingthelinkfunction
401
12.6.4Checkingthescalesofcovariates
12.6.5Checksforcompounddiscrepancies
12.7Checksforisolateddeparturesfromthemodel
403
12.7.1Measureofleverage
405
12.7.2Measureofconsistency
406
12.7.3Measureofinfluence
406
12.7.4Informalassessmentofextremevalues
407
12.7.5Extremepointsandchecksfor
systematicdiscrepancies
408
12.8Examples
409
12.8.1Carrotdamageinaninsecticideexperiment409
12.8.2Minitabtreedata
410
12.8.3Insuranceclaims(continued)
413
12.9Astrategyformodelchecking
414
12.10Bibliographicnotes
415
12.11Furtherresultsandexercises12
416
13Modelsforsurvivaldata
419
13.1Introduction
419
13.1.1Survivalfunctionsandhazardfunctions419
13.2Proportional-hazardsmodels
421
13.3Estimationwithaspecifiedsurvivaldistribution422
13.3.1Theexponentialdistribution
423
13.3.2TheWeibulldistribution
423
13.3.3Theextreme-valuedistribution
424
13.4Example:remissiontimesforleukaemia
425
13.5
Cox'sproportional-hazardsmodel
426
13.5.1Partiallikelihood
426
13.5.2Thetreatmentofties
427
13.5.3Numericalmethods
429
13.6Bibliographicnotes
430
13.7Furtherresultsandexercises13
430
14Componentsofdispersion
432
14.1Introduction
432
14.2Linearmodels
433
暂无评论