针对在Kinect平台利用人体动作进行人机交互的时效性问题,提出了一种基于时间序列相似性的快速人体动作识别方法。通过Kinect获取人体全身20个关节点,提取关键点的空间三维坐标,转化成特征向量,该特征向量模型能很好地对全身动作进行表示;在动作识别方面提出了一种快速动态时间弯曲距离(FastDynamicTimeWarping,F-DTW)算法,解决了因动作速度不同导致的两时间序列在时间轴上不一致的问题,通过引入下界函数和提前终止技术对算法进行加速优化,解决动作识别的时延问题,从而能快速地控制机器人;定义20种动作进行识别,平均识别速度较传统算法大大提高,验证了方法的有效性,满足与机器人