为了提高网络流量的预测精度,利用小波变换、差分自回归移动平均模型和最小二乘支持向量机等优点,提出一种基于小波变换的网络流量预测模型(WA-ARIMA-LSSVM)。针对网络流量多尺度特性,首先对网络流量时间序列进行小波分解,然后分别采用差分自回归移动平均模型和最小二乘支持向量机对网络流量的高频和低频进行建模与预测,最后小波重构高频和低频的预测结果,并采用仿真实验对模型性能进行分析。结果表明,WA-ARIMA-LSSVM提高了网络流量的预测精度,可以更加准确地描述网络流量的非平稳变化趋势。