开发基于生物医学文献的抑郁症药物本体自动学习技术,对于抑郁症辅助诊疗有着重要的指导意义。概念抽取是面向文本的本体学习的基础。然而,现有的本体概念抽取算法在解决特定、细粒度领域的概念抽取问题时性能较差。借鉴传统的领域相关性及领域一致性的思想,综合使用对数似然比和领域关联函数进行抑郁症药物领域的概念抽取。实验结果表明,该算法能够降低抑郁症其他相关领域对概念抽取的影响,同时改善低频术语的领域隶属度计算,提高了准召率。