Level Set Methods and Dynamic Implicit Surfaces Contents Preface vii Color Insert (facing page 146) I Implicit Surfaces 1 1 Implicit Functions 3 1.1 Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Geometry Toolbox . . . . . . . . . . . . . . . . . . . . . 8 1.5 Calculus Toolbox . . . . . . . . . . . . . . . . . . . . . . 13 2 Signed Distance Functions 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Distance Functions . . . . . . . . . . . . . . . . . . . . . 17 2.3 Signed Distance Functions . . . . . . . . . . . . . . . . . 18 2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Geometry and Calculus Toolboxes . . . . . . . . . . . . . 21 II Level Set Methods 23 3 Motion in an Externally Generated Velocity Field 25 3.1 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Upwind Dierencing . . . . . . . . . . . . . . . . . . . . 29 3.3 Hamilton-Jacobi ENO . . . . . . . . . . . . . . . . . . . 31 3.4 Hamilton-Jacobi WENO . . . . . . . . . . . . . . . . . . 33 3.5 TVD Runge-Kutta . . . . . . . . . . . . . . . . . . . . . 37 4 Motion Involving Mean Curvature 41 4.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . 41 4.2 Numerical Discretization . . . . . . . . . . . . . . . . . . 44 4.3 Convection-Diusion Equations . . . . . . . . . . . . . . 45 5 Hamilton-Jacobi Equations 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Connection with Conservation Laws . . . . . . . . . . . . 48 5.3 Numerical Discretization . . . . . . . . . . . . . . . . . . 49 5.3.1 Lax-Friedrichs Schemes . . . . . . . . . . . . . . . 50 5.3.2 The Roe-Fix Scheme . . . . . . . . . . . . . . . . 52 5.3.3 Godunovs Scheme . . . . . . . . . . . . . . . . . 54 6 Motion in the Normal Direction 55 6.1 The Basic Equation . . . . . . . . . . . . . . . . . . . . . 55 6.2 Numerical Discretization . . . . . . . . . . . . . . . . . . 57 6.3 Adding a Curvature-Dependent Term . . . . . . . . . . . 59 6.4 Adding an External Velocity Field . . . . . . . . . . . . . 59 7 Constructing Signed Distance Functions 63 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.2 Reinitialization . . . . . . . . . . . . . . . . . . . . . . . 64 7.3 Crossing Times . . . . . . . . . . . . . . . . . . . . . . . 65 7.4 The Reinitialization Equation . . . . . . . . . . . . . . . 65 7.5 The Fast Marching Method . . . . . . . . . . . . . . . . 69 8 Extrapolation in the Normal Direction 75 8.1 One-Way Extrapolation . . . . . . . . . . . . . . . . . . . 75 8.2 Two-Way Extrapolation . . . . . . . . . . . . . . . . . . 76 8.3 Fast Marching Method . . . . . . . . . . . . . . . . . . . 76 9 Particle Level Set Method 79 9.1 Eulerian Versus Lagrangian Representations . . . . . . . 79 9.2 Using Particles to Preserve Characteristics . . . . . . . . 82 10 Codimension-Two Objects 87 10.1 Intersecting Two Level Set Functions . . . . . . . . . . . 87 10.2 Modeling Curves in 3 . . . . . . . . . . . . . . . . . . . 87 10.3 Open Curves and Surfaces . . . . . . . . . . . . . . . . . 90 10.4 Geometric Optics in a Phase-Space-Based Level Set Framework . . . . . . . . . . . . . . . . . . . . . . . . 90 …… …… . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Distance Functions . . . . . . . . . . . . . . . . . . . . . 17 2.3 Signed Distance Functions . . . . . . . . . . . . . . . . . 18 2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Geometry and Calculus Toolboxes . . . . . . . . . . . . . 21 II Level Set Methods 23 3 Motion in an Externally Generated Velocity Field 25 3.1 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Upwind Dierencing . . . . . . . . . . . . . . . . . . . . 29 3.3 Hamilton-Jacobi ENO . . . . . . . . . . . . . . . . . . . 31 3.4 Hamilton-Jacobi WENO . . . . . . . . . . . . . . . . . . 33 3.5 TVD Runge-Kutta . . . . . . . . . . . . . . . . . . . . . 37 4 Motion Involving Mean Curvature 41 4.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . 41 4.2 Numerical Discretization . . . . . . . . . . . . . . . . . . 44 4.3 Convection-Diusion Equations . . . . . . . . . . . . . . 45 5 Hamilton-Jacobi Equations 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Connection with Conservation Laws . . . . . . . . . . . . 48 5.3 Numerical Discretization . . . . . . . . . . . . . . . . . . 49 5.3.1 Lax-Friedrichs Schemes . . . . . . . . . . . . . . . 50 5.3.2 The Roe-Fix Scheme . . . . . . . . . . . . . . . . 52 5.3.3 Godunovs Scheme . . . . . . . . . . . . . . . . . 54 6 Motion in the Normal Direction 55 6.1 The Basic Equation . . . . . . . . . . . . . . . . . . . . . 55 6.2 Numerical Discretization . . . . . . . . . . . . . . . . . . 57 6.3 Adding a Curvature-Dependent Term . . . . . . . . . . . 59 6.4 Adding an External Velocity Field . . . . . . . . . . . . . 59 7 Constructing Signed Distance Functions 63 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 63 7.2 Reinitialization . . . . . . . . . . . . . . . . . . . . . . . 64 7.3 Crossing Times . . . . . . . . . . . . . . . . . . . . . . . 65 7.4 The Reinitialization Equation . . . . . . . . . . . . . . . 65 7.5 The Fast Marching Method . . . . . . . . . . . . . . . . 69 8 Extrapolation in the Normal Direction 75 8.1 One-Way Extrapolation . . . . . . . . . . . . . . . . . . . 75 8.2 Two-Way Extrapolation . . . . . . . . . . . . . . . . . . 76 8.3 Fast Marching Method . . . . . . . . . . . . . . . . . . . 76 9 Particle Level Set Method 79 9.1 Eulerian Versus Lagrangian Representations . . . . . . . 79 9.2 Using Particles to Preserve Characteristics . . . . . . . . 82 10 Codimension-Two Objects 87 10.1 Intersecting Two Level Set Functions . . . . . . . . . . . 87 10.2 Modeling Curves in 3 . . . . . . . . . . . . . . . . . . . 87 10.3 Open Curves and Surfaces . . . . . . . . . . . . . . . . . 90 10.4 Geometric Optics in a Phase-Space-Based Level Set Framework . . . . . . . . . . . . . . . . . . . . . . . . 90 …… ……