为提高目标在强机动情况下的跟踪精度,更好地实现目标跟踪,在当前统计模型和卡尔曼滤波算法的基础上提出改进的目标跟踪方法。分析了当前统计模型,归纳出在目标弱机动和强机动情况下的优点及不足。进行强机动检测,以此判断目标的机动水平;将渐消因子引入卡尔曼滤波器,减少陈旧数据的影响,充分体现当前机动状态;在算法中在线辨识各项参数,并根据机动水平自适应地调整。仿真结果表明,改进的方法在弱机动时保持了当前统计模型的跟踪性能,而在强机动时拥有更高的跟踪精度。