为了提高在大流量背景下DDoS攻击检测的实时性,提出一种在大流量背景下基于活跃熵的DDoS攻击检测方法。在IP流层面通过分析系统活跃熵值来对整个流量进行初探,剔除正常流量。利用多特征广泛权重最小二乘孪生支持向量机算法(WWLSTSVM)对攻击威胁进行攻击确认。通过实验验证方法的可行性,实验表明在合适场景下该方法可以在保证时效性的同时减少系统误报率。大流量背景下该检测方法比一般的机器学习算法具有更好的检测性能。