Introduction.to.Machine.Learning.2nd.Edition
Introduction
to
Machine
Learning
Second
edition
Ethemalpaydin
Themitpress
Cambridge,Massachusetts
London,england
o2010MassachusettsInstituteofTechnology
Allrightsreserved.Nopartofthisbookmaybereproducedinanyformbyany
electronicormechanicalmeans(includingphotocopyingrecording,orinforma
tionstorageandretrieval)withoutpermissioninwritingfromthepublisher
Forinformationaboutspecialquantitydiscounts,pleaseemail
special_sales@mitpress.mit.edu
Typesetin10/13LucidabrightbytheauthorusingETEX28
Printedandboundintheunitedstatesofamerica
LibraryofCongressCataloging-in-PublicationInformation
Alpaydin,ethe
IntroductiontomachinelearningEthemalpaydin.-2nded
cm
Includesbibliographicalreferencesandindex
isbn978-0-262-01243-0(hardcover:alk
1.Machinelearning.I.Title
Q325.5.A462010
006.31-dc22
2009013169
CIP
10987654321
Briefcontents
1Introduction1
2SupervisedLearning21
3BayesianDecisionTheory47
4Parametricmethods61
5Multivariatemethods87
6Dimensionalityreduction109
7Clustering
143
8NonparametricMethods163
9Decisiontrees185
10Lineardiscrimination209
11Multilayerperceptrons233
12Localmodels279
13Kernelmachines309
14BayesianEstimation341
15HiddenMarkovModels363
16GraphicalModels387
17Combiningmultiplelearners419
18ReinforcementLearning
447
19DesignandAnalysisofmachineLearningExperiments475
aProbability517
Contents
seriesforewordxvii
Figures
XIX
Tables
Preface
Acknowledgments
NotesfortheSecondedition
Notations
1Introduction
1.1WhatIsMachinelearning
1.2ExamplesofMachineLearningApplications4
1.2.1LearningAssociations4
1.2.2Classification5
1.2.3Regression9
1.2.4UnsupervisedLearning11
1.2.5Reinforcementlearning
13
1.3Notes14
1.4Relevantresources16
1.5Exercises18
1.6References19
2SupervisedLearning21
2.1LearningaclassfromExamples21
Contents
2.2Vapnik-Chervonenkis(VC)Dimension27
2.3Probablyapproximatelycorrect(Pac)learning29
2.4Noise30
2.5LearningMultipleclasses32
2.6Regression34
2.7Modelselectionandgeneralization37
2.8DimensionsofaSupervisedmachinelearningalgorithm41
2.9Notes42
2.10Exercises43
2.11References44
3BayesianDecisionTheory47
3.1Introduction47
3.2Classification49
3.3Lossesandrisks5
3.4DiscriminantFunctions53
3.5UtilityTheory54
3.6Associationrules55
3.7Notes58
3.8Exercises58
3.9References59
4Parametricmethods61
4.1Introduction61
4.2MaximumLikelihoodestimation62
4.2.1Bernoullidensit
63
4.2.2Multinomialdensity64
4.2.3Gaussian(Normal)Density64
4.3EvaluatinganEstimator:Biasandvariance65
4.4ThebayesEstimator66
4.5ParametricClassification69
4.6Regression73
4.7Tuningmodelcomplexity:Bias/VarianceDilemma76
4.8Modelselectionprocedures80
4.9Notes84
4.10Exercises84
4.11References85
5Multivariatemethods87
5.1Multivariatedata87
Contents
5.2Parameterestimation88
5.3EstimationofMissingvalues89
5.4Multivariatenormaldistribution90
5.5Multivariateclassific
n
94
5.6TuningComplexity99
5.7DiscreteFeatures102
5.8Multivariateregression103
tes105
5.10Exercises106
5.11References107
6Dimensionalityreduction
109
6.1Introduction109
6.2Subsetselection110
6.3Principalcomponentsanalysis113
6.4Factoranalysis120
6.5Multidimensionalscaling125
6.6LineardiscriminantAnalysis128
6.7Isomap133
6.8Locallylinearembedding
135
6.9Notes138
6.10Exercises139
6.11References140
7Clustering
143
7.1Introduction143
7.2Mixturedensities144
7.3k-Meansclustering
145
7.4Expectation-MaximizationAlgorithm149
7.5Mixturesoflatentvariablemodels154
7.6SupervisedlearningafterClustering155
7Hierarchicalclustering157
7.8Choosingthenumberofclusters158
7.9Notes160
7.10Exercises160
7.11Refer
161
8NonparametricMethods163
8.1Introduction163
8.2Nonparametricdensityestimation165
X
Contents
8.2.1Histo
Estimator165
8.2.2Kernelestimator167
8.2.3k-NearestNeighborEstimator168
8.3Generalizationtomultivariatedata170
8.4NonparametricClassificatin
l71
8.5CondensedNearestNeighbor172
8.6NonparametricRegression:SmoothingModels174
8.6.1RunningMeanSmoother175
8.6.2KernelSmoother176
8.6.3RunningLineSmoother177
8.7HowtoChoosetheSmoothingParameter178
8.8Notes180
8.9Exercises181
8.10References182
9Decisiontrees185
9.1Introduction185
9.2Univariatetrees187
9.2.1ClassificationTrees188
9.2.2RegressionTrees192
9.3Pruning194
9.4Ruleextractionfromtrees197
9.5LearningRulesfromData198
9.6MultivariateTrees202
9.7Notes204
9.8Exercises207
9.9References207
10LinearDiscrimination
209
10.1Introduction209
10.2Generalizingthelinearmodel211
10.3Geometryofthelineardiscriminant212
10.3.1TwoClasses212
10.3.2Multipleclasses214
10.4PairwiseSeparation216
10.5ParametricDiscriminationrevisited217
10.6GradientDescent218
10.7LogisticDiscrimination220
10.7.1TwoClasses220
暂无评论