为研究高校教务信息管理系统中学生自主在线选课的个性化推荐问题,采用基于近邻模型与概率矩阵分解相融合的改进算法.通过衡量学生(选课)之间的相似关系寻找相似学生(选课),再将与学生(选课)相似性最大的邻居集合应用到基于概率矩阵分解的协同过滤推荐算法中,最终依据预测评分值和限制条件给出Top-K推荐结果排序.原型系统测试实验结果表明:改进算法更适用于高校选课推荐应用,并能够有效地解决数据稀疏问题.