针对径向基函数(RBF)网络结构和初始数据中心难以客观确定的不足,采用二分搜索密度峰聚类算法(TSDPCA)找到数据中心值及数据簇类个数作为RBF神经网络的初始参数和隐藏层节点数,再利用梯度下降法优化RBFNN结构及各个参数建立预报模型,并应用于广西月降水预报中,以检验该模型的有效性。结果表明,与K-RBFNN和OLS-RBFNN的模型相比,TSDPCA-RBFNN预报平均相对误差值下降了10%~35%,具有更好的预报性能。