斯坦福大学机器学习教程笔记、本课程提供了一个广泛的介绍机器学习、数据挖掘、统计模式识别的课程。主题包括: (一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。(二)无监督学习 (聚类,降维,推荐系统,深入学习推荐)。(三)在机器学习的最佳实践(偏差/方差理 论;在机器学习和人工智能创新过程)。本课程还将使用大量的案例研究,您还将学习如何 运用学习算法构建智能机器人(感知,控制),文本的理解(Web搜索,反垃圾邮件),计 算机视觉,医疗信息,音频,数据挖掘,和其他领域。 本书一共19章 视频https://www.coursera.org/course/ml