针对人脸识别中的光照变化问题,借鉴“分而治之”的思想,提出通过光照分类来提高不同光照情况下人脸的识别率。根据人脸图像灰度随光照变化的分布特点,将图像划分为三类:无偏光类、左偏光类和右偏光类,分别在不同的光照子集中对人脸图像进行处理与识别,并在YALEB人脸库上完成实验验证。结果表明,该方法不需要进行光照归一化处理,有效减弱了光照不均匀对人脸识别的影响,在提高识别率的同时降低了运算量,识别率可从未分类前的86.7%提高到99.6%,对于可变光照下的人脸识别有一定的应用前景。