暂无评论
K—means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用.由于该终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果。这里提出了一种K—means算法的改进算法,
文章目录1.实验目的2.导入必要模块3.用pandas处理数据4.拟合+预测5.把预测结果合并到DF6.可视化聚类效果7.比较不同的簇数的均方误差8.对数据归一化处理 1.实验目的 1.使用sklea
聚类算法k-means和层次聚类的java源代码~
给公司做报告时写的ppt,希望大家能喜欢
该程序利用OpenCV中的K均值聚类函数Kmeans2对图像进行颜色聚类,达到分割的目的。 编写此函数的目的是:Kmeans2函数的用法有些难掌握,参考资料少,尤其是对图像进行操作的例子少,我找了很久
Matlab数字图像处理,kmeans聚类分割,带GIUI界面,分割聚类数可以输入。
基于K-means聚类算法的客户价值分析研究
基于遗传算法的kmeans聚类方法的研究
免费供应,少走弯路
粒子群(PSO)与K-means结合是聚类分析中的重要方法之一,但都未考虑粒子更新导致的空类问题。提出基于多子群粒子群伪均值(PK-means)聚类算法,为该问题的解决提供一种有效途径,并与粒子群K均
暂无评论