针对生理信号的情感识别问题,将蚁群优化算法用于呼吸信号(RSP)特征选择,并采用自适应的适应度参数值、变异策略和临近位置交换策略对算法进行改进,使用Fisher进行情感分类,获得了较高的识别率和有效特征组合。采集了212个被试6种不同情感(高兴、惊奇、厌恶、悲伤、愤怒、恐惧)的呼吸信号数据进行仿真实验,识别效果最好的是高兴情感,最好识别率达到了92.06%,平均识别率达到了84.43%。实验仿真结果表明,将蚁群优化算法引入基于呼吸信号的情感识别研究是可行的。