针对当前肿瘤类疾病诊治过程中存在的错误与过度医疗问题,本研究基于医疗大数据提取出相似病案专家处方中的影像信息,利用机器学习分类模型提出了发现错误与过度诊治的检查控制机制与解决方案。该方案依托医院长期积累的各类肿瘤疾病病历中的CT、MRI图像,以每次诊疗过程中的实际肿瘤类型为依据,从医疗数据库中选择对应类型的影像数据进行特征提取、特征选择、模型构建,得到该类型肿瘤的预测分类器,预测当前病例的良恶性;并通过跟医生诊断结果的对比判断诊疗过程中是否存在过度与错误医疗问题。其核心是提高不依赖人工判别方法的判别正确率来降低肿瘤类疾病的错诊可能性,通过实验证明结合了Spearman去冗余方法的SVM_RFE