为了解决数据的不平衡性这一问题,提出一种利用分布函数合成新样本的过抽样和随机向下抽样相结合的算法。算法对降维后的主成分进行分布函数拟合,然后利用分布函数生成随机数,并对生成的随机数进行筛选,最后与随机向下抽样相结合。实验所用数据取自NASA MDP数据集,并与经典的SMOTE 向下抽样方法进行对比,从G-mean和F-measure值可以看出,前者的预测结果明显优于后者,预测精度更高。