提出了双树复小波变换域尺度内和尺度间复系数相关性图像去噪新方法。该方法利用双树复小波变换的多方向性和平移不变性对图像进行多尺度分解,采用邻域复系数微分窗对其高频方向子图进行尺度内复系数相关性建模,并按最小错误率贝叶斯决策规则进行分类和状态标识;再把复系数尺度内状态标识与复小波域隐马尔可夫树相结合,从而实现降噪功能。实验结果表明,该方法在峰值信噪比指标上优于传统的滤波方法,能有效地抑制噪声的同时,对图像边缘具有较好的保护能力。