近年来,压缩感知理论飞速发展。很多压缩感知的应用中,信号的测量可以通过卷积滤波和之后的二次采样完成。在此基础上,实现了一种由勒让德(Legendre)序列构造的矩阵。该矩阵在经过二次采样之后,得到一种新的确定性测量矩阵。对于一个K-稀疏的信号,通过该测量矩阵可以对信号进行稳定的恢复重建。据仿真结果显示,在对K-稀疏信号进行恢复的过程中,该测量矩阵的恢复效果与高斯随机测量矩阵的应用效果相当。